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Abstract. Assuming that the S-matrix on non-commutative (NC) spacetime can still be developed per-
turbatively in terms of the time-ordered exponential of the interaction Lagrangian, we investigate the
perturbation theory of NC field theory. We first work out with care some typical Green functions starting
from the usual concepts of time-ordering and commutation relations for free fields. The results are found
to be very different from those in the naive approach pursued in the literature. A simple framework then
appears naturally which can incorporate the new features of our results and which turns out to be the
usual time-ordered perturbation theory extended to the NC context. We provide the prescriptions for
computing S-matrix elements and Green functions in this framework. We also emphasize that the naive
seemingly covariant approach cannot be reproduced from the current one, in contrast to the field theory
on ordinary spacetime. We attribute this to the phase-like non-local interaction intrinsic in NC field theory
which modifies the analyticity properties of the Green functions significantly.

1 Introduction

The idea of describing coordinates in terms of non-com-
muting operators goes presumably back to Heisenberg and
appeared already in a paper by Snyder [1] in 1947, ex-
tended by Yang [2] in the same year. It was associated with
problems of treating hadrons which are extended objects
and the assumption that there might exist a fundamen-
tal length. At that time renormalization theory was not
yet well developed, but considered as a “distasteful proce-
dure” [1]. Even today this judgment might be shared by
some people. In any case the opinion is widespread that at
least in a theory which describes consistently all phenom-
ena down to the Planck length the notion of spacetime un-
dergoes some drastic change. The attempts of Connes and
Lott [3] aiming at a reformulation of the standard model in
terms of non-commutative (NC) geometry started a new
era which has been continued in the context of string the-
ory [4]. An analysis which brought the subject neatly into
the context of somewhat more conventional quantum field
theory has been provided by Doplicher et al. [5]. They
showed that there exist representations of the coordinate
operators such that for a class of minimal states in the
state space of the system interactions can be written as
the Moyal product of standard quantum fields as they
have been introduced by Filk in another context [6]. The
road is then open to perturbation theory which has as a
new element just this non-local interaction.

a e-mail: liaoy@itp.uni-leipzig.de
b e-mail: sibold@itp.uni-leipzig.de

Many calculations and model considerations have been
performed in this vein and led to interesting new prob-
lems, most noticeably ultraviolet–infrared mixing [7] and
a potential violation of unitarity [8]. These were all based
on the assumption that up to modifying vertices by NC
phase factors the Feynman rules are the usual ones, in
particular that lines are represented by the conventional
Feynman propagators. Doubts on this have been raised re-
cently in a paper by Bahns et al. [9] by reformulating in ϕ3

theory the equation of motion in terms of the well-known
Yang–Feldman equation [10]. They arrived thereby at a
solution which is manifestly Hermitian; hence the theory
must be unitary even if time-space NC is non-vanishing.
This is, of course, in line with the general considerations of
[5], but does not yet explain why one arrives at violation
of unitarity in the same model if one uses the Feynman
rules of Filk [6], as shown in [8]. Our study shows that
the answer is very simple. Starting from standard free
field theory, i.e. the standard commutation relations and
multi-particle Fock space, one still formally defines the
S-matrix as S = T exp

[
i
∫

d4xLint
]
. But when perform-

ing the contractions according to Wick’s theorem prop-
erly one can never combine the contraction functions of
positive and negative frequency to the causal Feynman
propagator. This arises because when time does not com-
mute with space, the time-ordering procedure does not
commute with the star multiplication either. The naive
approach in terms of Feynman propagators is thus not
well founded.

In the next section we shall illustrate this statement
by a detailed analysis of some examples. The picture on
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how to proceed in the general case will appear naturally
in Sect. 3. It turns out that the correct procedure of do-
ing perturbation calculations in NC field theory is just
the time-ordered perturbation theory extended to the NC
case. We shall spell out the prescriptions for computing
S-matrix and amputated Green functions. We also pro-
vide an argument on how the seemingly covariant result in
the naive approach cannot be reproduced from the time-
ordered perturbation theory. We give our conclusions in
the last section.

2 Analysis of some examples

The basic quantity in quantum field theory is the Green
function which determines the probability amplitude of
the S-matrix. We assume that perturbation theory for
NC field theory can still be developed in terms of vac-
uum expectation values of time-ordered products of field
operators so that the Green function is computed as a
series expansion as usual,

G(x1, · · · , xn)

= 〈0|T
(
ϕ1(x1) · · ·ϕn(xn)ei

∫
d4xLint

)
|0〉, (1)

where Lint is the interaction Lagrangian. When one ex-
pands the above in Lint, T is meant to be taken before in-
tegration over spacetime is carried out. The time-ordering
itself is also defined in the usual manner; for example, for
free bosonic fields, it is

T (ϕ1(x1)ϕ2(x2)) (2)
= τ(x0

1 − x0
2)ϕ1(x1)ϕ2(x2) + τ(x0

2 − x0
1)ϕ2(x2)ϕ1(x1),

where τ is the step function. (We reserve θ for the NC
parameter.) In this section we shall work out explicitly
some Green functions in NC field theory using the above
definitions and free field commutators. The differences to
the naive approach of NC field theory will be clearly illus-
trated by them.

2.1 The vertex for the cubic scalar interaction

Let us start with the following three-point function:

G(x1, x2, x3) (3)

=
∫

d4x4〈0|T (ϕ(x1)ϕ(x2)ϕ(x3)(ϕ � ϕ � ϕ)(x4)) |0〉,

which would occur in ϕ3 theory. The star product is de-
fined as

(f1 � f2)(x) =
[
exp

(
i
2
θµν∂x

µ∂
y
ν

)
f1(x)f2(y)

]

y=x

, (4)

where x, y are the usual commutative coordinates and θµν

is a real, antisymmetric, constant matrix characterizing
the non-commutativity of spacetime, [x̂µ, x̂ν ] = iθµν . As in

the usual field theory, the basic idea to work out the above
quantity is to reexpress the time-ordered product in terms
of the normal-ordered product (N) plus contraction terms
arising from field commutators when interchanging field
operators. Sandwiched between the vacuum state, only the
completely contracted terms will contribute. In the usual
field theory this is accomplished by Wick’s theorem and a
completely contracted term is given by a product of Feyn-
man propagators. The same result is taken for granted in
the naive approach of NC field theory. But as we shall
show below this is actually not the case when time does
not commute with space.

In the example of (3), there are 4! time-orders but we
only have to consider two groups of them, namely, x0

1 >
x0

2 > (x0
3 and x0

4) and (x0
3 and x0

4) > x0
2 > x0

1, while others
may be obtained by interchange of coordinate indices. For
both of them, the following result will be useful:

T (ϕ3ϕ4 � ϕ4 � ϕ4) = N(ϕ3ϕ4 � ϕ4 � ϕ4)

+ N

(
2D(0)ϕ3ϕ4 +

∫
d3µqϕ3ϕ(x4 − q̃)

)

+ τ34N (D34 � ϕ4 � ϕ4 + ϕ4 � D34 � ϕ4 + ϕ4 � ϕ4 � D34)
+ τ43N (D43 � ϕ4 � ϕ4 + ϕ4 � D43 � ϕ4 + ϕ4 � ϕ4 � D43)

+ τ34

(
2D(0)D34 +

∫
d3µqD(x3 − x4 + q̃)

)

+ τ43

(
2D(0)D43 +

∫
d3µqD(x4 − x3 − q̃)

)
, (5)

where the star multiplication refers to x4. Some expla-
nations are in order. We have denoted the arguments of
functions by the indices of their coordinates when no con-
fusion arises; e.g., ϕ3 = ϕ(x3), D34 = D(x3 − x4) and
τ43 = τ(x0

4 − x0
3). The above result is obtained by push-

ing annihilation (positive-frequency) operators to the right
and creation (negative-frequency) operators to the left us-
ing the basic commutation relation between them,

ϕ(x) = ϕ+(x) + ϕ−(x),
[
ϕ+(x), ϕ−(y)

]
= D(x− y)

=
∫

d3µp exp[−ip+ · (x− y)], (6)

where d3µp = d3p[(2π)32Ep]−1 is the standard phase
space measure with Ep = (p2+m2)1/2, and pµ

λ = (λEp,p)
(λ = ±) is the on-shell momentum with positive or neg-
ative energy. Due to NC of the star product we have to
take care of the order of ordinary functions in addition
to the order of annihilation and creation operators when
interchanging operators. For example,

N(ϕ4 � ϕ4 � ϕ4) = [ϕ+ � ϕ+ � ϕ+ + ϕ− � ϕ+ � ϕ+

+ ϕ− � ϕ− � ϕ+ + ϕ− � ϕ− � ϕ−

+ (ϕ−�ϕ+) � ϕ+ + ϕ−�(ϕ+ � ϕ+)
+ ϕ− � (ϕ−�ϕ+) + (ϕ− � ϕ−)�ϕ+](x4)

+ 2D(0)ϕ4 +
∫

d3µqϕ(x4 − q̃), (7)

where q̃µ = θµνq
ν and � refers to the star product using

−θµν . The last but one term arises from contractions of the
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left and right fields with the middle one which is divergent
as usual, while the last term comes from the contraction
of the left with the right which is non-local because of
the star product. These two terms are the origin of the
third line and the last two lines in (5). These terms will
finally contribute to the disconnected part of G(x1, x2, x3)
and are thus ignored from now on. The second line in (5)
does not contribute either when multiplied from the left by
ϕ1ϕ2 or from the right by ϕ2ϕ1 and sandwiched between
the vacuum. We are thus left with the fourth and fifth lines
in (5). Before we proceed, we would like to stress that for
NC time-space (i.e., θ0i �= 0) it is not permitted to change
the order of time-ordering and the star multiplication since
the former involves a distribution functions of time and
the latter contains derivatives with respect to time. In
this general case, we cannot move τ34 and τ43 inside of
the star product to form with D34 and D43 the Feynman
propagator DF(x3 − x4). This is the main source of the
difference in the current approach from the conventional
one pursued in the literature. Only when time commutes
with space, the two approaches become identical.

Let us go back to the computation of G(x1, x2, x3) and
consider the time sequence x0

1 > x0
2 > x0

3 > x0
4,

A = 〈0|ϕ1ϕ2N(D34 � ϕ4 � ϕ4

+ ϕ4 � D34 � ϕ4 + ϕ4 � ϕ4 � D34)|0〉. (8)

Up to disconnected terms, only the combination

ϕ+
1 ϕ

+
2 · · ·ϕ−

4 · · ·ϕ−
4 · · ·

contributes. Applying repeatedly

ϕ+
1 ϕ

+
2 ϕ

−
4 = ϕ−

4 ϕ
+
1 ϕ

+
2 +D24ϕ

+
1 +D14ϕ

+
2 , (9)

we obtain

A = {D14, D24, D34}�, (10)

where the star refers only to x4 and we have introduced
the completely symmetrized sum of the star products,

{B1, B2, B3}� =
∑

π3

Bπ(1) � Bπ(2) � Bπ(3), (11)

where π3 is the permutation of three objects. The above
result is symmetric in x1 and x2 and thus applies as well to
the time sequence x0

2 > x0
1 > x0

3 > x0
4. Including the case

of x0
4 > x0

3, we have, for T12T34 and up to disconnected
terms,

〈0|T (ϕ1ϕ2ϕ3(ϕ � ϕ � ϕ)(x4)) |0〉
= τ34{D14, D24, D34}� + τ43{D14, D24, D43}�, (12)

where T12T34 denotes the time sequence (x0
1 and x0

2) > (x0
3

and x0
4). The opposite case of (x0

3andx0
4) > (x0

1andx0
2) is

similarly computed to be

T34T12 : τ34{D41, D42, D34}� + τ43{D41, D42, D43}�. (13)

The other two pairs of cases are obtained by permutation
of the indices 1, 2, 3:

T23T14 : τ14{D24, D34, D14}� + τ41{D24, D34, D41}�,

T14T23 : τ14{D42, D43, D14}� + τ41{D42, D43, D41}�,

T31T24 : τ24{D34, D14, D24}� + τ42{D34, D14, D42}�,

T24T31 : τ24{D43, D41, D24}� + τ42{D43, D41, D42}�.

(14)

The above results can be combined into a compact ex-
pression. Since the connected contribution involves exclu-
sively functions Dj4 and D4j (j = 1, 2, 3), we hope that
they are also accompanied exclusively by step functions
τj4 and τ4j . This is indeed the case as in ordinary field
theory. Actually all terms except {D14, D24, D34}� and
{D41, D42, D43}� are already in the desired form. There
are three contributions to {D14, D24, D34}� arising respec-
tively from the time sequences (x0

1andx0
2) > x0

3 > x0
4,

(x0
2andx0

3) > x0
1 > x0

4 and (x0
3andx0

1) > x0
2 > x0

4, whose
union is identical to the sequence (x0

1andx0
2andx0

3) > x0
4

corresponding to the product of step functions τ14τ24τ34.
A similar combination occurs for {D41, D42, D43}�, so that

〈0|T (ϕ1ϕ2ϕ3(ϕ � ϕ � ϕ)(x4)) |0〉
=

∑

λ1λ2λ3

τλ1
14 τ

λ2
24 τ

λ3
34 {Dλ1

14 , D
λ2
24 , D

λ3
34}�, (15)

where λj = ± defines the direction of time in the relevant
function,

τ
λj

j4 =

{
τj4,

τ4j ,
D

λj

j4 =

{
Dj4, forλj = +,
D4j , forλj = −. (16)

We would like to emphasize again that it is generally not
permitted to move the step functions into the star prod-
ucts in (15). Only when time commutes with space, we
are allowed to do so and the result of the naive approach
is reproduced,

{DF(x1 − x4), DF(x2 − x4), DF(x3 − x4)}�,

for θ0i = 0, (17)

where DF(xj − x4) = τ+
j4D

+
j4 + τ−

j4D
−
j4 is the Feynman

propagator in coordinate space.
To transform into momentum space we first work out

explicitly the quantity in (15). Using the expressions

τ
λj

j4 =
iλj

2π

∫ ∞

−∞
dsj

exp[−isj(x0
j − x0

4)]
sj + iελj

,

D
λj

j4 =
∫

d3µpj
exp[−ipjλj · (xj − x4)], (18)

we have, for example,

τλ1
14 τ

λ2
24 τ

λ3
34

(
Dλ1

14 � D
λ2
24 � D

λ3
34

)

=
3∏

j=1

[
iλj

2π

∫ ∞

−∞
dsj

∫
d3µpj

e−ipj ·(xj−x4)

sj + iελj

]
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× exp[−i(p1λ1 , p2λ2 , p3λ3)]

=
3∏

j=1

[∫
d4pj

(2π)4
iPλj (pj)e−ipj ·(xj−x4)

]

× exp[−i(p1λ1 , p2λ2 , p3λ3)], (19)

where we introduced p0
j = sj + λjEpj

and

Pλ(k) =
λ

2Ek[k0 − λ(Ek − iε)]

=
(
2Ek[λk0 − (Ek − iε)]

)−1
,

(k1, k2, · · · , kn) =
∑

i<j

ki ∧ kj , (20)

with p ∧ q = 1/2 θµνp
µqν . The pair of parentheses in-

troduced above has some properties to be used implicitly
later on. It changes sign when the order of arguments is
reversed. The shift of sign in some arguments is identical
to the shift of sign in the remaining arguments. It is im-
portant to note that the wedge product in the NC phase of
(19) involves only on-shell momenta of positive (λj = +)
or negative (λj = −) energy corresponding to propagation
in the time direction of x0

j > x0
4 or x0

j < x0
4. Including all

permutations of D factors in (15) which amounts to sum-
ming over permutations of the NC phase, and integrating
over x4, we arrive at

G(x1, x2, x3)

=
∑

λ1λ2λ3

3∏

j=1

[∫
d4pj

(2π)4
iPλj (pj) exp(−ipj · xj)

]

× (2π)4δ4(p1 + p2 + p3) (21)

×
∑

π3

exp[−i(pπ(1)λπ(1)
, pπ(2)λπ(2)

, pπ(3)λπ(3)
)].

Transforming into momentum space is now straightfor-
ward:

Ĝ(k1, k2, k3) =
3∏

j=1

[∫
d4xj exp(−ikj · xj)

]

×G(x1, x2, x3)

= (2π)4δ4(k1 + k2 + k3)
∑

λ1λ2λ3

3∏

j=1

[
iPλj (kj)

]

×
∑

π3

exp[−i(kπ(1)λπ(1)
, kπ(2)λπ(2)

, kπ(3)λπ(3)
)], (22)

where kj ’s are the incoming momenta into the vertex.
We have reversed the signs of variables λj and λ, used
P−λ(−k) = Pλ(k) and the property of the parentheses
to remove the minus signs in the arguments of the NC
phases.

We make a few comments on the above result. First,
the NC phases involve only on-shell momenta of positive
and negative energies. For a given set of λj , the permuta-
tion sum of NC phases is

2 cos(k1λ1 , k2λ2 , k3λ3) + 2 cos(k2λ2 , k3λ3 , k1λ1)
+2 cos(k3λ3 , k1λ1 , k2λ2). (23)

Note that the above does not simplify into 6 cos(k1λ1 , k2λ2)
etc. as it does in the naive approach where all kjλj

are
replaced by kj . The reason is that while

∑
j kj = 0 is al-

ways true this is generally not the case with kjλj
where

k0
j is replaced by λjEkj

: even if this sum vanishes for
some configuration of λj and kj , it cannot vanish for all
configurations. For the case of identical fields considered
here, there is even no such configuration at all due to
kinematics. Furthermore, since the NC phases depend on
the time direction parameters λj we cannot exhaust the
sum over λj by using iP+(k) + iP−(k) = iD̂F(k) with
iD̂F(k) = i(k2 − m2 + iε)−1 being the Feynman propa-
gator. These findings are completely different from the
naive approach. It is intriguing that such differences oc-
cur already at tree level in perturbation theory and we
thus expect that the whole picture of perturbation theory
will be altered. The differences arise from the fact that we
are in general not allowed to interchange the order of the
time-ordering procedure and the star multiplication. Only
when θ0i = 0, the star multiplication does not involve time
derivatives and the NC phases in (22) are independent of
λj , and then the differences disappear.

The external lines in Ĝ may be amputated by mul-
tiplying by an inverse Feynman propagator (iD̂F)−1 for
each external line and noting that

Pλ(k) = D̂F(k)ηλ(k),

ηλ(k) =
1
2

(
1 + λ

k0

Ek

)
. (24)

We obtain the 1PI vertex for the above Ĝ:

Γ̂ (k1, k2, k3)

= (2π)4δ4
(
∑

i

ki

)
∑

{λj}

3∏

j=1

[
ηλj (kj)

]

×
∑

π3

exp[−i(kπ(1)λπ(1)
, kπ(2)λπ(2)

, kπ(3)λπ(3)
)]. (25)

2.2 The two by two scattering
through cubic interactions

To motivate our generalization in the next section, we con-
sider the following four-point function,

G(x1, x2, x3, x4)

=
∫

d4x5

∫
d4x6 (26)

× 〈0|T (π1π2χ3χ4(π � σ � π)5(χ � σ � χ)6) |0〉,
which would arise from the Lagrangian of cubic interac-
tions amongst real scalar fields,

Lint = −gπ(π � σ � π)(x) − gχ(χ � σ � χ)(x). (27)

We have deliberately introduced non-identical fields to
avoid unnecessary complications due to many possible
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contractions amongst factors of identical fields, which just
amounts to proper symmetrization of the NC phases, as
we saw in the above example. Our goal will be the S-
matrix element of the two by two scattering ππ → χχ
and its crossed channels.

It is clear that we should first contract the two σ fields.
We have, for x0

5 > x0
6,

〈0|T (π1π2χ3χ4(π � σ � π)5(χ � σ � χ)6) |0〉
=
∫

d3µp〈0| · · · (π � e−ip+·x5 � π)5 · · ·
×(χ � e+ip+·x6 � χ)6 · · · |0〉, (28)

and for x0
5 < x0

6,

〈0|T (π1π2χ3χ4(π � σ � π)5(χ � σ � χ)6) |0〉
=
∫

d3µp〈0| · · · (χ � e−ip+·x6 � χ)6 · · ·
×(π � e+ip+·x5 � π)5 · · · |0〉, (29)

where the dots represent other fields appropriate to the
time-ordering and p refers to the σ field, especially p0

± =
±Ep = ±(p2 +m2

σ)1/2.
Next we consider contractions of π and χ fields. Since

[πi, χj ] = 0, the relative order of π and χ fields is ir-
relevant; what is relevant is the order within the groups
(x0

1, x
0
2, x

0
5) and (x0

3, x
0
4, x

0
6) respectively. Corresponding to

x0
5 > x0

6 and x0
6 > x0

5, we have two possibilities, T125T346
and T346T125. Let us study the π field contraction,

〈0| · · ·T (π1π2π5 � e±ip+·x5 � π5) · · · |0〉. (30)

There are 3! orders. For example, for x0
1 > x0

2 > x0
5, the

above becomes, up to disconnected terms,

〈0| · · ·π+
1 π

+
2 π

−
5 � e±ip+·x5 � π−

5 · · · |0〉
= 〈0| · · · (D15π

+
2 +D25π

+
1 ) � e±ip+·x5 � π−

5 · · · |0〉
= (D15 � e±ip+·x5 � D25 + (1 ↔ 2))〈0| · · · |0〉, (31)

where D15 and D25 refer to the π field and � refers to
x5. The above is symmetric in x1 and x2 and thus actu-
ally corresponds to the time-order specified by τ15τ25. The
other time-orders can be similarly computed. Their sum
gives the complete result for all orders,

〈0| · · ·T (π1π2π5 � e±ip·x5 � π5) · · · |0〉 (32)

=
∑

λ1λ2

τλ1
15 τ

λ2
25 (Dλ1

15 � e±ip+·x5 � Dλ2
25 + (1 ↔ 2))〈0| · · · |0〉.

The last factor in the above is precisely the one for the χ
field contraction and is similarly computed. We thus have

〈0|T (π1π2χ3χ4(π � σ � π)5(χ � σ � χ)6) |0〉
=
∫

d3µpτ56
∑

{λj}
τλ1
15 τ

λ2
25 τ

λ3
36 τ

λ4
46

×
[
Dλ1

15 � e−ip+·x5 � Dλ2
25 + (1 ↔ 2)

]

×
[
Dλ3

36 � e+ip+·x6 � Dλ4
46 + (3 ↔ 4)

]

+ (same as above exceptτ56 → τ65, x5,6 → −x5,6)

=
∫

d3µp

∑

{λj}

∑

λ

τλ1
15 τ

λ2
25 τ

λ3
36 τ

λ4
46 τ

λ
56

×
[
Dλ1

15 � e−ipλ·x5 � Dλ2
25 + (1 ↔ 2)

]

×
[
Dλ3

36 � e+ipλ·x6 � Dλ4
46 + (3 ↔ 4)

]
, (33)

where Dλ3
36 and Dλ4

46 refer to the χ field and the star in the
second factor is with respect to x6. In the second equality
we have made the shift p → −p for λ = −.

Using the representations as shown in (18) and the
same trick that led to (19), we make the above Green
function ready for transformation into momentum space.
For example,

τλ1
15 τ

λ2
25 τ

λ3
36 τ

λ4
46 τ

λ
56

×
[
Dλ1

15 � e−ipλ·x5 � Dλ2
25

] [
Dλ3

36 � e+ipλ·x6 � Dλ4
46

]

=
4∏

j=1

[∫
d4pj

(2π)4
iPλj (pj)

] ∫
d4p

(2π)4
iPλ(p)

× e−ip1·(x1−x5)e−ip2·(x2−x5)e−ip3·(x3−x6)

× e−ip4·(x4−x6)e−ip·(x5−x6) (34)
× exp[−i(p1λ1 ,−pλ, p2λ2)] exp[−i(p3λ3 ,+pλ, p4λ4)].

We can now integrate over x5 and x6, which results in
two factors of δ functions, then transform into momentum
space, and sum over all terms,

Ĝ(k1, k2, k3, k4)

=
4∏

j=1

[∫
d4xje−ikj ·xj

]
G(x1, x2, x3, x4)

= (2π)4δ4
(
∑

i

ki

)
∑

{λj}

∑

λ

∏

j

[
iPλj (kj)

]
iPλ(p)

× (exp[−i(k1λ1 ,−pλ, k2λ2)] + (1 ↔ 2))
× (exp[−i(k3λ3 ,+pλ, k4λ4)] + (3 ↔ 4))

= (2π)4δ4
(
∑

i

ki

)
∑

{λj}

∑

λ

∏

j

[
iPλj (kj)

]
iPλ(p)

× 2 cos(k1λ1 ,−pλ, k2λ2)2 cos(k3λ3 ,+pλ, k4λ4), (35)

with p = k1 +k2 = −k3 −k4. Be careful that k1λ1 +k2λ2 �=
pλ �= −k3λ3 −k4λ4 . For comparison, in the naive approach
the above would be

(2π)4δ4
(
∑

i

ki

)
∏

j

[iD̂F(kj)]iD̂F(p)

× 2 cos(k1, k2)2 cos(k3, k4), (36)

which according to our preceding analysis is correct only
for θ0i = 0. The 1PI function is obtained by amputation,

Γ̂ (k1, k2, k3, k4)
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= (2π)4δ4
(
∑

i

ki

)
∑

{λj}

∑

λ

∏

j

[
ηλj

(kj)
]
iPλ(p)

× 2 cos(k1λ1 ,−pλ, k2λ2)2 cos(k3λ3 ,+pλ, k4λ4). (37)

Let us now extract the S-matrix element for on-shell
particles from the above 1PI function. We take the ex-
ample of ππ → χχ scattering. This means that k0

1 =
+Ek1 , k

0
2 = +Ek2 , k

0
3 = −Ek3 , k

0
4 = −Ek4 . Thus only one

term in the sum over {λj} contributes due to η−(k1) = 0
etc. Including the coupling factors as well, the transition
amplitude is

iT (π(k1) + π(k2) → χ(k3) + χ(k4))

= (2π)4δ4(k1 + k2 − k3 − k4)
∑

λ

iPλ(p)

× (−igπ)2 cos(k1+,−pλ, k2+)
× (−igχ)2 cos(−k3+, pλ,−k4+)

= (2π)4δ4(k1 + k2 − k3 − k4)iA, (38)

where p = k1 + k2 = k3 + k4 and A is the amplitude
with the usual normalization as computed from Feynman
diagrams in ordinary quantum field theory. Note also that
we have reversed the signs of k3 and k4 so that k3− →
−k3+, k4− → −k4+. More explicitly,

T (π(k1) + π(k2) → χ(k3) + χ(k4))
= −gπgχ(2π)4δ4(k1 + k2 − k3 − k4) (39)

×
[
2 cos(k1+,−p+, k2+)2 cos(−k3+, p+,−k4+)

2Ek1+k1(k0
1 + k0

2 − Ek1+k1 + iε)

+
2 cos(−k3+, p−,−k4+)2 cos(k1+,−p−, k2+)

2Ek3+k4(−k0
3 − k0

4 − Ek3+k4 + iε)

]
.

We make a few remarks concerning the S-matrix cal-
culation. First, the crossed channels of the above process
may be obtained similarly. For example, for πχ → πχ
scattering, we may choose k0

1 = +Ek1 , k
0
2 = −Ek2 , k

0
3 =

+Ek3 , k
0
4 = −Ek4 . Second, from the above detailed analy-

sis it is clear how to calculate the most complicated case of
identical particle scattering through their self-interactions.
We should include all possible Feynman diagrams and for
each of them employ the same analysis which just amounts
to more symmetrization at the vertices with respect to
identical fields. In this way we get the following contribu-
tions to the amputated four-point Green function of the
π field at the lowest level in Lint = −gππ � π � π,

Γ̂ (k1, k2, k3, k4)

= −g2
π(2π)4δ4

(
∑

i

ki

)
∑

{λj}

∑

λ

4∏

j=1

[
ηλj (kj)

]

× (As +At +Au) , (40)

whereAs, At, Au are from s−, t−, u−channels respectively,

As = iPλ(ps)
∑

π3

exp[−i(k1λ1 , k2λ2 ,−psλ)]

×
∑

π3

exp[−i(k3λ3 , k4λ4 ,+psλ)],

At = iPλ(pt)
∑

π3

exp[−i(k1λ1 , k3λ3 ,−ptλ)]

×
∑

π3

exp[−i(k2λ2 , k4λ4 ,+ptλ)],

Au = iPλ(pu)
∑

π3

exp[−i(k1λ1 , k4λ4 ,−puλ)]

×
∑

π3

exp[−i(k3λ3 , k2λ2 ,+puλ)], (41)

with ps = k1+k2, pt = k1+k3, pu = k1+k4. Here π3 refers
to the 3! permutations of the three momenta appearing in
each factor of the NC phase sums. It is straightforward
to project the S-matrix element from the above which we
shall not write down. And there is also no problem to ex-
tend to more complicated interactions like ϕ4. Finally, if
our aim is restricted to the S-matrix for on-shell parti-
cles, we may proceed more directly from the expectation
values of the S-operator. For the above example, we need
compute the following quantity,

〈χχ|S|ππ〉 = (−igπ)(−igχ)
∫

d4x5

∫
d4x6〈χ(k3+)χ(k4+)|

× T ((π � σ � π)5(χ � σ � χ)6) |π(k1+)π(k2+)〉
+ higher orders, (42)

which just corresponds to a special assignment of the time-
order in (26), namely π1 and π2 in the far past, χ3 and χ4
in the far future, and others in between. This is precisely
the contributing part in the above analysis. There is thus
no doubt that the results for the S-matrix coincide. The
main advantage of coping with the Green function for this
purpose is that we may project all physical processes from
the same Green function.

3 Generalization

The structure shown in (39) looks familiar to us and is very
suggestive. Actually it is nothing but the “old-fashioned”,
time-ordered perturbation theory [11,12] properly modi-
fied to NC field theory. This fits also on a somewhat more
formal level to the pragmatic point of view which we as-
sume here. The S-operator maps on the one hand any
prepared incoming state onto the respective outgoing one,
but this can also be considered as the time transport of
this incoming state into the outgoing one. As long as we
can represent it as a time-ordered exponential with a Her-
mitian exponent times the pure imaginary unit i we have
formal unitarity and thus satisfy the first requirement for
true unitarity which means conservation of the transition
probability in the sense of quantum mechanics – to which
we shall return in a separate publication.

The time-ordered Feynman diagrams for the above ex-
ample are depicted in Fig. 1. In the language of the time-
ordered perturbation theory, a physical process is virtual-
ized as a series of transitions between physical intermedi-
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Fig. 1. Time-ordered diagrams corresponding to (39). Time
flows upwards

ate states that are sequential in time. The transition am-
plitude is weighted by the interaction vertices which are
evaluated for on-shell momenta if they depend on them
and by the energy deficit of the intermediate states. Re-
alizing this, it becomes obvious how to proceed in the
general case. For further applications, we give below the
prescriptions for computing the on-shell transition matrix
T at some fixed order in perturbation, which are readily
generalized from the ordinary ones [11,12]. The additional
piece for general off-shell amputated Green functions will
be described later on.
(1) Draw all Feynman diagrams for the process under
consideration. For each Feynman diagram draw all of its
time-ordered diagrams. Only the time-order of interact-
ing vertices is relevant and indistinguishable time-orders
are counted only once. Each time-ordered diagram is com-
puted by putting together the following factors.
(2) Associate with each internal line (with a spatial mo-
mentum k) a phase space integral

∫
d3µk.

(3) Associate with each vertex v, which is formed by in-
ternal lines j and external ones e of incoming spatial mo-
menta qa and which has the interaction pattern in the La-
grangian −gψ1 � ψ2 � · · ·ψn, an interaction factor
g exp[−i(q1λ1 , q2λ2 , · · · , qnλn)]. λa = +(−) if the vertex
v is the later (earlier) end of the line a. The initial (fi-
nal) particles e are always counted as earlier (later) than
the vertex v. Symmetrize the above factor with respect to
identical fields. Impose spatial momentum conservation at
the vertex v by multiplying (2π)3δ3 (

∑
a qa).

(4) Associate with each intermediate state occurring be-
tween two sequential vertices (earlier v1 and later v2) a fac-

tor of energy deficit,
[∑

e(±p0
e) −∑j E(kj) + iε

]−1
. Here

∑
e(±p0

e) is the algebraic sum of the zeroth components
of external momenta entering (+) or leaving (−) the di-
agram before and including the earlier vertex v1. E(kj)
is the on-shell positive energy of the jth line contained in
this intermediate state.
(5) Multiply by a global factor of −2πδ

(∑
e(±p0

e)
)

and a
symmetry factor 1/S which excludes that of indistinguish-
able diagrams mentioned above.

The above prescriptions would be precisely the same
as obtained in ordinary field theory if we could interpret

the vertex factor as a kind of numerator arising from spin.
In ordinary relativistic field theory we can recast the time-
ordered perturbation theory into a covariant form in terms
of Feynman diagrams. So, it is tempting to ask why this is
not possible in NC field theory. Of course, Lorentz invari-
ance is lost at the very beginning and it is not guaranteed
that a seemingly covariant formalism exists and is equiva-
lent to the time-ordered one if it does. But this is not the
whole point. As far as Feynman diagrams are concerned,
we can always treat θµν as if it were a Lorentz tensor and
there will be no problem if we do not use any special ref-
erence frame for the calculation since we could not return
back by a transformation afterwards [13]. We could also
consider θµν as some background field and assign to it a
transformation law so that the above consequence still ap-
plies. In the following we present an argument that in NC
field theory formulated via time-ordered perturbation the-
ory one cannot reproduce the seemingly covariant results
of the naive approach. Our time-ordered version seems
however to be a safe starting point as far as quantum me-
chanics still applies to NC spacetime. A key element of it
is the highly non-local character of NC interactions.

Let us first recall briefly how to shift from the covariant
perturbation theory to the time-ordered one in ordinary
field theory. For a detailed account of the topic we refer
the interested reader to [12] for a nice presentation. For
this purpose, we consider the contribution from a Feyn-
man diagram to a general, unamputated and connected
Green function in momentum space. One first expresses
the δ function of the zeroth components of momenta at
each vertex in terms of a time integral. Then, one rear-
ranges the product of time integrals thus obtained in a
time-ordered way. This is followed by integrating over the
zeroth momentum components, which is typically of the
following form:

∫ ∞

−∞
dk0

ie−ik0tf(k0)
k2 −m2 + iε

=
∫ ∞

−∞
dk0

ie−ik0tf(k0)
(k0 − Ek + iε)(k0 + Ek − iε)

. (43)

Here t is the difference of the time variables introduced
above between the two vertices connected by the line car-
rying momentum kµ in the same direction of t. f(k0) is
usually a polynomial of finite degree and analytic in the
complex k0 plane. The above integral is evaluated using
contours. For t > (<)0, one closes the contour in the lower
(upper) half plane picking up the residue at k0 = Ek − iε
(k0 = −Ek + iε), with the result

π

Ek

[
τ(t)e−i(Ek−iε)tf(+Ek) + τ(−t)e+i(Ek−iε)tf(−Ek)

]
.

(44)

A crucial condition for the above manipulation is that
f(k0) must not blow up at the lower (upper) infinite semi-
cirle in the complex plane faster than e−ik0t decays. Fi-
nally, one completes the time integrals sequentially and
arrives at the result in the time-ordered perturbation the-
ory. Now let us try to do the opposite in NC theory from
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the time-ordered perturbation theory to the covariant one
by turning around the above procedure. In this case the
function f(±Ek) is an NC phase which is essentially an ex-
ponential (superposition) of the form exp(±iEkk̃

′0), where
k̃′0 = θ0ik

′i with k′ being a spatial momentum of some
other internal or external line. If the above procedure
were reversible, the corresponding function in the complex
k0 plane would be something like exp(ik0k̃

′0) so that the
naive result might have a chance to be recovered. But this
is impossible because it is not guaranteed that it increases
slower than e−ik0t decays. Actually whether it decays or
blows up depends on the sign of k̃′0 which itself changes
with k′. This thus interferes with the above contour inte-
gration. One may argue that we may shift t to absorb k̃′0.
This is again not legitimate since t is a time difference and
doing so simply spoils the time-ordering procedure which
is a key bridge to relate the two formalisms. Furthermore,
a connected diagram has certainly more than one line; the
above shift of t’s, if it worked at all for one of them, would
also interfere with each other making the trick totally use-
less. The above argument fails only if at tree level k̃′0 is an
external momentum and happens to vanish. But this is a
very special kinematic configuration if possible at all. We
surely cannot rely on this in favour of the naive approach.
From this analysis it is also clear that the main obstacle
originates from the non-local exponential interaction that
is intrinsic in NC field theory.

Finally we extend the above prescriptions to ampu-
tated and connected Green functions by adding the fol-
lowing rule concerning external lines for time-ordered di-
agrams. It should also be applied to each individual dia-
gram in which the connection of external lines to vertices
is fixed.
(6) Multiply by a factor of ηλe(pe) for each external line
with incoming momentum pe and time direction parame-
ter λe which is +(−) if it connects to a(n) later (earlier)
vertex. This same λe also appears in the preceding vertex
factors (where it takes one of the signs for S-matrix). Sum
over the set {λe}.

4 Discussion and conclusion

Based on the assumption that a time-ordered expansion
of a formally unitary time evolution operator is a good
starting point also on NC spacetime, we studied pertur-
bative NC field theory which turns out to be the time-
ordered perturbation theory adapted properly to the NC
case. This was achieved by a detailed analysis of some
exemplifying Green functions which we worked out with
care, and then extended to the general case. We found
no obstacles in implementing non-commutativity in per-
turbation theory whether time commutes with space or
not. We provided prescriptions for computing S-matrix
elements and amputated Green functions.

Although we only treated scalar fields in this paper,
we expect no problems with spinor fields as is the case
on ordinary spacetime. Since the spinor effect amounts to
an additional numerator associated with a propagator, it

plays a similar role as a vertex, namely, the momentum
contained therein will be on-shell with positive or nega-
tive energy. The situation is more complicated for gauge
bosons. But again as in the usual theory there should be
no problem at least in the ’t Hooft–Feynman gauge. Our
method also applies to any dimensions.

The NC perturbation theory thus obtained is already
different at tree level from the naive approach followed
in the literature. The interaction vertices involve only on-
shell momenta of positive or negative energy of participat-
ing particles. The basic quantity connecting the vertices
is not the causal Feynman propagator but the individual
propagation functions of positive and negative frequency.
These elements are naturally incorporated in the frame-
work of the time-ordered perturbation theory. In contrast
to the ordinary field theory, it seems impossible to re-
cast the NC time-ordered theory into a covariant form as
has been assumed in the naive approach. We attributed
this difference to the highly non-local character of phase-
type NC interactions which has a significant impact on the
analyticity properties of Green functions in the complex
energy plane.

Since the whole picture for perturbation theory has
been changed, we expect some of the phenomena found
previously in the naive approach will also be altered.
Among them we would like to mention briefly the unitarity
issue which we will detail soon in a separate paper. Since
the NC phase now involves only on-shell momentum, it
is independent of the zeroth component of a generally off-
shell four-momentum. The analyticity properties of Green
functions in the complex plane of the zeroth component
will thus be very different from that in the naive approach.
Furthermore, the right-hand side of the unitarity relation
for Green functions is also modified due to the change of
vertices, which does not seem to have been noticed thus
far. Considering all of this it is quite reasonable to expect
that unitarity will be practically preserved as it is formally
built in the time-ordered perturbation theory. This may
give some hints for the interplay of string and field theory.

Acknowledgements. Y.L. would like to thank M. Chaichian for
a visit at the Helsinki Institute of Physics and its members
for hospitality. He enjoyed many encouraging discussions with
M. Chaichian, P. Presnajder and A. Tureanu. K.S. is grateful
to D. Bahns and K. Fredenhagen for clarifying discussions on
their work.
As we were preparing the manuscript a new preprint [14] ap-
peared in which the ideas developed in [9] were further elabo-
rated on by some examples.
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